Evaluation of nitrogen application methods, rates, and algorithm on corn under different soil electrical conductivity (EC) zones

> Dr. Pawel Wiatrak Clemson University

#### U.S. Corn Acres



USDA-NASS 03-30-12

#### U.S. Corn Yield



#### Corn production in South Carolina

| Year | Planted (acres) | Grain yield (Bu/acre) |
|------|-----------------|-----------------------|
| 2006 | 310,000         | 110                   |
| 2007 | 400,000         | 97                    |
| 2008 | 355,000         | 65                    |
| 2009 | 335,000         | 111                   |
| 2010 | 350,000         | 91                    |
| 2011 | 360,000         | 65                    |
| 2012 | 320,000         | 122                   |

#### **Objectives**

### 1) Evaluation of nitrogen application method and rate on corn

2) Optimize side-dress N rate for dryland corn under different soil electrical conductivity (EC) zones using optical sensing technology and Clemson algorithm.

#### Southern Coastal Plain Soils

- Crop productivity depends on soil texture.
- Mobile nutrients (nitrogen) are utilized differently as soil texture varies.
- Yield potential of the sandy soils is generally very low.



## Evaluate field variability using Veris 3100



# Dividing the area into soil electrical conductivity (EC) zones

| Soil Zones | Soil EC value |
|------------|---------------|
| 1          | 0.9-3.0       |
| 2          | 3.1-5.9       |
| 3          | 6.0-6.9       |
|            |               |
|            |               |
|            |               |

Soil zone 3

Soil zone 4

Materials and Methods (Objective 1)

- 1) Nitrogen application methods
  - a) All at planting
  - b) Split application
- 2) N application rates (lb/acre)
  - a) 0
  - b) 40
  - c) 80
  - d) 120
  - e) 160

### Corn grain yields under different zones



## Corn grain yields under application methods



### Corn grain yields under application rates



Materials and Methods (Objective 2)

- 1. Plots received 40 lbs/acre N at planting
- 2. Side-dress nitrogen application rates based on response index (RI) and developed Clemson algorithm:
  - a) Separately for each zone
  - b) Averaged across soil zones
  - c) 25% below and above the averaged predicted rate across soil zones
  - d) Conventional rate

Developing the algorithm for side-dress N application

- Record plant Normalized Difference Vegetation Index (NDVI) using GreenSeeker (Red NDVI)
- Collect grain yields and develop an algorithm for variable N application in corn





INSEY - In Season Estimated Yield = NDVI / number days from planting to sensing (GDD>0). The INSEY index estimates the plant biomass produced per day when growth is possible.

Normalized Difference Vegetation Index (NDVI)

- NDVI = <u>NIR <u>RED</u>
   NIR + <u>RED</u>
  </u>
- NIR WAVELENGTH OF NEAR-INFRARED BAND.
- **RED** WAVELENGTH OF RED BAND.

GreenSeeker (Red NDVI) uses NIR – 770 nm and RED – 660 nm 1 nm =  $10^{-9}$  m



http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring\_vegetation\_2.php

#### Calculate response index (RI)



http://nue.okstate.edu/

RI = NDVI N Rich strip / NDVI prior to side-dress N

### Corn grain potentials with and without nitrogen application



 $\frac{YP_{MAX} - Maximum potential yield (no yield increase expected with additional N)}{Side-dress N rate = (YP_N - YP_0) * N in corn grain / N use efficiency}$ 

# Calculated N rates based on the algorithm and response index (RI)

| Method                                           | 2012                  |
|--------------------------------------------------|-----------------------|
|                                                  | lb acre <sup>-1</sup> |
| N Rate for each zone: Zone 1<br>Zone 2<br>Zone 3 | 40<br>140<br>140      |
| Average N rate across 3 zones                    | 120                   |
| 25% above average                                | 150                   |
| 25% below average                                | 90                    |
| Standard N rate rate                             | 120                   |

#### Corn grain yields under zone 1



#### Corn grain yields under zone 2



#### Corn grain yields under zone 3



## Soil N-NO<sub>3</sub> movement under different zones



## Soil N-NO<sub>3</sub> movement under different N rates



#### Summary

- ✓ Corn yields were higher from soil zones 2 and 3 than zone 1.
- ✓ Higher yields were obtained from plots with the split N application and greater with highest nitrogen rates.
- ✓ Grain yields from plots with predicted sidedress rate of 90 lb N rate (predicted rate across soil zones and decreased by 25%) were not significantly lower compared to higher N rates for soil zones 1, 2, and 3.
- ✓ Therefore, N rates could be reduced by 30 lb N/acre compared to a fixed rate for all zones.

#### Summary (cont.)

- ✓ Significantly lower N-NO<sub>3</sub> concentration at 0-6 inch soil depth was observed for soil zone 1 due to higher leaching compared to other zones.
- ✓ Highest N rate contributed to significantly greater N-NO<sub>3</sub> concentration below 18 inches soil depth.
- ✓ Generally, Clemson algorithm can help to optimize nitrogen rates and improve N use efficiency while reducing N-NO<sub>3</sub> leaching in the soil.

Thank you